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Two procedures are discussed for the direct variational optimization of 
localized molecular orbitals which are expanded in local subsets of the 
molecular basis set. It  is shown that a Newton-Raphson  approach is more  
efficient than an iterative diagonalization scheme. The effect of the basis-set 
truncation on the quality of ab-initio SCF results is investigated for Be, Li2, 
HF, H20 ,  NH3, CH4 and C2H6. 
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1. Introduction 

The main reasons for the use of localized molecular orbitals (LMO's) in quantum 
chemical studies are their connection with classical chemical concepts, their 
usefulness in isolating functional groups within chemically related molecules, and 
the possibility of transferring LMO's  f rom one molecule to other ones with similar 
structure. 

In most  cases L M O ' s  are constructed from canonical SCF orbitals by way of a 
unitary transformation (a recent review is given in [1]; cf. also [2], [3]). The 
resulting L M O ' s  are more  or less localized on an a tom or in a bond, but have 
so-called orthogonalization tails extending over the whole molecule. These 
orthogonalization tails have to be truncated, for practical reasons, when using the 
L M O ' s  for the purposes ment ioned above. The corresponding energy error is 
usually not very large, but by no means negligible ( -  1.5 eV) [4]. 
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A variational deorthogonalization of the LMO's  before truncation does not seem 
to improve the situation: Sundberg et al. [5] obtained LMO's,  which were still 
fairly orthogonal to each other and did not exhibit a spectacular increase in 
localization; in particular, the tails did not vanish. 

An alternative is the direct determination of LMO's.  If for each localization centre 
(atom or bond) a separate local basis set is used (i.e. a subset of the total molecular 
basis set, consisting of functions centred on or near a given atom or bond), tails can 
be explicitly excluded. 

Such local basis sets have been discussed by several authors. Matsuoka [6] and the 
present authors [7] have modified the Adams-Gilber t  equations [8] for this case. 
Mehler [9] has derived a variational method for non-orthogonal  group functions 
based on local energy functionals. In these methods, however, there is no 
guarantee that those LMO's  are obtained w h i c h - f o r  the given local basis 
s e t s -  lead to the lowest energy, when inserted in the Har t ree-Fock (HF) energy 
expression. This has been claimed by Payne [10], but it has been shown by the 
present authors [11] that the derivation of Payne's equations was erroneous. 

In this paper, we want to show that Payne's equations can be easily modified in 
such a way as to lead to the desired result. Furthermore,  a second m e t h o d -  a 
modified Newton-Raphson procedure - is presented which also yields the varia- 
tionally "best"  LMO's.  In Sect. 2 the two methods are described and their 
convergence properties are discussed. Applications to Be, Li2, FH, H20,  NH3, 
CH4, C2H6 are given in Sect. 3. 

2. Methods 

We start from a set of basis functions, which is partit ioned into subsets {IX/p)}, 
where i is the number of the subset and p the number of a basis function within a 
given subset. We assume that each subset corresponds to a certain localization 
centre (atom, lone pair, bond), i.e. includes only basis functions localized on or 
near this centre. We now require that a correspondence may be established 
between the localization centres and the (occupied) LMO's  so that we can label 
the LMO's  {[q~i~)} in a similar way as the basis functions, where i now denotes the 
localization centre and a distinguishes between different orbitals which can be 
attributed to the same centre. This one- to-one correspondence leads, in a natural 
way, to the following approximation for the (occupied) LMO's  

I~io:> = Z Cip, ioz ]Xip> (1) 
p 

where all C,.p.j~ with i #/" are constrained to be zero. This means that each LMO is 
expanded in basis functions of the corresponding subset, a priori excluding tails 
which might be described by basis functions of other subsystems. 

Two remarks are in order here: 

In the first place, the constraint (1) does not, in itself, provide LMO's  which are 
"best localized" according to some localization criterion (as e.g. the Foster-Boys 
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[12] or Edmiston-Ruedenberg [13] LMO's), nor do they exhibit minimum 
(absolute) overlap with LMO's from adjacent localization centres. The block- 
structure of the orbital-coefficient matrix Cip,#, is advantageous, however, when 
transferring LMO's from one molecule to another. (In addition, this block- 
structure leads, in a natural way, to approximations for the interactions of 
electrons in different LMO's,  which reduce the computational effort for ab-initio 
calculations in a drastic way [7], [14].) 

Secondly, the LMO's in Eq. (1) have to be non-orthogonal, when belonging to 
different localization centres i # ]. This has nothing to do with the degree of 
localization, as discussed e.g. in [15], but is simply due to the fact that the number 
of non-zero coefficients in Cip,j~ would not be enough, generally, to meet the 
orthogonality requirements. Consider the simple case that there are m orbitals, 
each expanded in n basis functions; then the number of non-zero coefficients is 
nm, while the number of orthonormality relations is m (m + 1)/2; these relations 
cannot in general be satisfied, consequently, for m > 2n - 1. 

We now search for the Slater determinant with the lowest energy, which can be 
built up from the non-orthogonal orbitals [~i~) in Eq. (1). With the usual definition 
for the one-electron part h of the Hamiltonian H and the Fock operator F, the 
total electronic energy E for a closed-shell molecule reads 

o r  

E = ~] (q~i~[h +FI~?~) (2) 
i,~ 

where the reciprocal orbitals lifts) are defined as follows 

o c t  

S-~ I~,a) = 2 [~]~) j~,,~ (3) 
it3 

S-1 ( i~,i~ is the inverse overlap matrix of the orbitals (1)). Varying E with respect to 
the (occupied) LMO ]~0i~), we get 

Using the relation 

3S "a = - S  -1. 8S.  S -1, (5) 

the dependence of the ]Sffi~) on 16q~i~) is easily established: 

[6(u3)(oi~) = (1 -p)13q~#~). S~l,i~ -[~?je)(Sq~j~ [~i~), (6) 

with the density matrix 

o c c  o c t  

k ~  k~, 

Inserting Eq. (6) into Eq. (4) yields 

6(ja)E = 4(Sq~it~ [(1 - p)Fl(oj~) (8) 
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and, finally, 

OE 
~ Cj.q,it ~ - 4(,~,iq [(1 - p)F[~#~). (9) 

The lowest energy is achieved, if the energy gradient (9) vanishes for all j, q,/3 : 

(Xjq](1 - p ) F l ~ i t ~ ) =  0. (10) 

We now describe two methods for the determination of the orbital coefficients 
Coo.i= in Eq. (1), so that the Civ, i= satisfy the conditions (10). 

In a first approach, we cast Eq. (10) into eigenvalue form. We define a partial 
density matrix for the subsystem / 

p('>=E 1~;-,><r (11) 
3/ 

with the properties 

p (i)[~i[3) = 6ii[~i(3) (12) 

and, if orbitals belonging to the same localization centre are chosen to be mutually 
orthogonal (of. Eq. (18) below), 

p<i~l~Jo) = I~J,~). (13) 

Using Eq. (11), the left-hand side of Eq. (10) can be transformed to 

(x,q I(1 - p)F(1 - p + p ~J))lcp/t3 ); (14) 

this means that Eq. (10) is equivalent to 

with 

ff~(i) = (1 - p  + p(i)T)F(1 - p  +p<J]) (16) 

and 

~i~ = (~i~lFl~j~). (17) 

The eigenvalue problem in Eq. (15) has to be solved separately for each sub- 
system, but for each j only the sp'ace spanned by the corresponding local basis set 
is involved. The resulting orbitals fulfil the (partial) orthonorrnality relations 

<~;~ I~J,,,) = ~,~-,,. (18) 

An equation similar to Eq. (15) has been given recently by Payne [16], but his 
subsequent replacement 

o~i~ ._> ,~i~ = y },p;.,)(,p/ 
T 

[10] is only correct in two cases: (a) if orbitals from different subsystems are 
mutually orthogonal, or (b) if a common basis set is used for all subsystems; those 
cases have been explicitly excluded in our discussion here. 
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Our experience with the solution of Eq. (15) indicates that, in the HF iterations 
with the modified Fock operator F, the convergence may be extremely slow - in 
particular near the energy minimum - so as to render the method nearly 
impractical. The reasons are the following: 

(a) the ~(n contain orbital coefficients C~p,;~ up to the sixth order (while only the 
second order is involved in the standard HF procedure); this may lead to similar 
convergence problems as in MC-SCF (cf. e.g. [17]). 
(b) the diagonalization of F(/) in the basiS {IX/q)} is equivalent to that of F in the 
basis 

IX;q) = (1 " p  + p(i))[X/q) (19) 

as suggested by Peters [18]; because of 

(X;q Iq~,~ ) = 0 (i # j) (20) 

no simultaneous admixing of both virtual orbitals and occupied LMO's from other 
localization centres to a given 

I~#;~ )=  (1 - p  + p(i))[~/~) (21) 

can take place in a single iteration step; this may affect the convergence of the 
LMO's in an unfavourable way. 

We now turn to a second method of determining the orbital coefficients Cip, i~ 
subject to the conditions (10), a direct minimization method. 

Direct minimization of the SCF energy for orthogonal orbitals has been dealt with 
in a number of papers ([19] to [22]); we introduce it here for LMO's expanded 
in local basis sets, in a similar way as discussed by us previously in a different 
context [14]. 

In order to satisfy Eq. (10), we have to search for a local minimum of the energy 
St "~ (o) 1 function E({Qq,i~} ). If some guess t,-~iq,io~ for the orbital coefficients in Eq. (1) 

is known, E({Cjqao}) can be approximated by a Taylor series in ACiq.iB =- 
C/~ao - C~]/o up to second order, for 2~Qq,ir not too large. In the Taylor series, we 
need the energy gradient OF_,/aC~q./r which is given by Eq. (9), and the Hessian 
matrix O2E/OCjq,/o OCk,,k~ [c ~~ which can be evaluated in the following way: 

We vary 8(~mE from Eq. (8) with respect to I~kv) and get, neglecting the 
dependence of F on I~0kv), 

8 (kv)(8 (imE) -~ 4(-(8q~i~ [6 (k~,)O" FI~jO ) + (8~oi~ [ (1 - p)FI8 (kv)6i~)). 

Inserting in Eq. (22) the relations 

(22) 

i a  

and (cf. Eq. (6)) 

Is~k~6j~> = (1-  p)ls~k~>" S~,j~- 16k~>" <8r (24) 
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we obtain 

02E ~'4(A(F)iq.krSk-~.i~ - A (1) jq kX,~k~,lfl ,ha) 
3C&,io 3Ckr, kv 

/ 
with 

A (X),q, kr = (Xiq I(1 -- p)X(1 - P)lXk,> 

and 

Bi.,k~ = (X;ql(1 --P)FI~k~). 

(25) 

(26) 

(27) 

When minimizing/5, one may require that orthonormali ty is preserved within 
each subsystem/'. This is possible, without loss of generality, since E is constant 
with respect to arbitrary linear transformations between the orbitals (pi~. The 
constraint is necessary in order  to avoid large changes hCjq,;0 of the orbital 
coefficients, which would make the Taylor expansion up to second order for 
E({Cjq,j~}) unreliable. To first order,  the constraints read 

y~ Siq#(ACjqi ~ r-,!o). + A t  ,..,(o) 
, , ~ 1 r , 1 3 ,  ~.a~..jr,] q, ,_. jq,j~ ) = 0 (28) 

q,r  

The minimization of the Taylor series approximation to E (with Eqs. (9) and (25)) 
under the constraints (28) leads to a set of linear equations for {ACiqao } which can 
be solved by standard methods, to yield an improved guess {C~!u3 } for the orbital 
coefficients in Eq. (1). The procedure has then to be repeated until self-consis- 
tency is reached. 

Some remarks are in order  here: 

Firstly, if there is a one- to-one correspondence between i and a (i.e. if each LMO 
has its own local basis set), the Hessian matrix (25) has dimension N, where N is 
the total number  of basis functions; furthermore,  in this case the constraints (28) 
reduce to m normalization conditions, where rn is the total number  of 0rbitals 
involved, The procedure described above is then comparable to a standard HF 
calculation with respect to storage requirements and computation time. (Note that 
two-electron integrals enter Eq. (25) only via the Fock matrix F.) 

Secondly, the constraints (28) alone are not sufficient, in general, to guarantee the 
non-singularity of the Hessian matrix [20]. This problem is not as pressing, 
however, as in the standard SCF case, because only unitary transformations within 
the individual subsystems have to be considered here. If eadi  LMO is expanded in 
a separate local basis set, singularities are excluded anyway. 

Thirdly, the final result of the iterative procedure does not depend on the 
approximations in Eqs. (22) and (28). Only the rate of convergence is affected. In 
our applications, the convergence was typically as fast as, or even faster than that 
in standard SCF calculations with comparable basis sets. For cases with an 

( o )  �9 inappropriate starting guess {Cjq,il3 } It may be advantageous, however, to replace 
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Table 1. Total energy E (in a.u.) for Be. 
Basis set: 7s [23], partitioned into subsets Local basis sets E 
in different ways (see text) Core Valence 

4s 4s -14.55278 
5s 4s -14.56621 
5s 5s -14.56622 
6s 5s -14.56722 

Standard SCF -14.56723 

Eq. (25) by a matrix with the same eigenvectors  and tl~e same positive eigenvalues,  
but  with the negative eigenvalues replaced by zero. 

3. Applications 

The influence of basis set part i t ioning be tween  the l s  and 2s orbitals is shown for  
Be in Table  1. 

The  local basis set for  l s  includes the k functions with highest exponents  out  of the 
7s Gaussian basis set of Roos  and Siegbahn [23], while for the 2s local basis the k '  
functions with lowest exponents  are chosen. If the two local basis sets have only 
one funct ion (with med ium exponent)  in c o m m o n  (k = k'  = 4), the deviat ion f rom 
the s tandard  SCF result  is only 0.4 eV; this deviat ion is largely due to deficiencies 
of the core:  if k is enlarged to 5, the error  is reduced  to 0.03 eV. This result  is in 
line with the findings of Dunn ing  and H a y  [24], that,  in a segmented  contract ion 
scheme,  it is sufficient, to at tr ibute one  primitive funct ion with med ium exponent  
to bo th  the l s  and the 2s group.  

Results for  Li2 are given in Table  2. Each  of the two local basis sets for  the 
( ls2)-cores  includes the k s- funct ions  with highest exponents  out  of  the 4 s / l p  
a tomic  basis set, while the valence orbital is expanded  in the k '  s - funct ions  with 
lowest exponents  (and the p-funct ions)  f rom both  atoms. Wi th  no "over lapp ing"  
functions (i.e. k = k ' =  2), the errors  in the total energy  and b o n d  length are 

Table 2. Total energy E (in a.u.), bond length re (in a.u.), and 
force constant k (in a.u.; calculated at the experimental bond 
length 5.05 a.u.) for Li-2. Basis set: 4s/lp (contracted from 
5s/lp; exponents: (16.1, 2.94), 0.795, 0.075, 0.03, 0.12), 
partitioned into subsets in different ways 

Local basis sets E re k 
Core Valence 

2s 2~lp -14.6667 5.42 
3s 2s/lp -14.6690 
2s 3s/lp -14.6756 5.31 
3s 3s/lp -14.6780 

Standard SCF -14.6786 5.32 

0.020 

0.018 

0.019 
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Table 3. Calculated bond lengths re (in a.u.), bond angles ~e (zf_HXH), and total energies E (in a.u.; 
taken at the equilibrium distances, with the exception of CH4, where values at the calculated bond 
length are given) for the isoelectronic molecules CH4, H20, NH3, FH. Basis sets: STO-3G, with 
p-functions in the direction of the bonds. Values in brackets: standard SCF results 

Local basis sets Non-bonding E re 
orbital(s) and 

Molecule Core Bond orbitals(s) lone-pair(s) 

~oe 

FH ls(F) 2p~(F), ls(H) 2s(F)/2p,~(F) -98.5606 1.812 
(-98.5708) (1.807) 

H20 Is(O) 28(O), 2pr ls(H) 2p~(0)/2s(0) ,  -74.9598 1.870 
2p ,~(O)  (-74.9629) (1.871) 

NH3 ls(N) 2s(N), 2p(N), ls(H) 2s(N), 2p(N) -55.4493 1.947 
(-55.4540) (1.952) 

CH4 ls(C) 2s(C), 2p(C), ls(H) -39.7213 2.048 
(-39.7269) (2.047) 

100.4 ~ 
(lOO.O ~ ) 
104.2 ~ 

(lO4.2 ~ ) 

0.32 eV and 0.05 fi~, respectively. By adding one basis function per atom to the 
valence set (k' = 3) one gets results which are virtually identical with those of a 
standard SCF calculation. 

Table 3 shows bond lengths and total energies for the isoelectronic series CH4,  

NH3, HeO, FH. STO-3G basis sets have been used, segmented into local subsets 
according to the following scheme. Different subsets are used for different LMO's.  
Core orbitals are described by ls  STO's, bond orbitals by 2s and 2p STO's (with 
the 2p's directed along the bond axes) together with a hydrogen ls  function (an 
exception is FH, where the 2s STO is only used for the non-bonding orbital), lone 
pairs are expanded in 2s and (suitably oriented) 2p STO's. Only the 2s-function is 
common to more than one local basis set; a further redundancy occurs, however, 
for NH3 and CH4, where four 2p-functions (one for each bond or lone-pair 
orbital) are implied. The restriction introduced by the use of the local basis sets 
leads to energies which are by 0.1 to 0.3 eV higher than energies from standard 
SCF calculations with STO-3G basis sets. The maximum error occurs for FH; we 
note that it can be reduced to 0.05 eV, if the bonding orbital and the non-bonding 
2s orbital of FH are treated within the same subsystem. 

For CH4 we have also calculated LMO's  with Payne's method [10] using the basis 
sets given above: the energy increases by 0.05 eV. A detailed comparison with the 
work of Matsuoka [6] is not possible, because his basis sets are different from ours; 
fo r  C H 4  he obtains - with a similar definition of subsystems - energy deviations 
from standard SCF, which are larger than ours by 0.1 to 0.4 eV. The truncated 
LMO's  for C H 4  (with a minimal STO basis) of Newton, Switkes and Lipscomb [4] 
yield an energy loss of 0.8 eV compared to standard SCF, which is 5 times greater 
than ours. Turning now from energies to equilibrium geometries, we may state 
that our LMO results are virtually of the same quality as the corresponding 
standard SCF ones: the maximum deviation in bond length is 0.005 a.u. 

Calculated values for C2H6, o u r  last example, are compiled in Table 4. 



Local Basis Sets for Localized Molecular Orbitals 177 

Table 4. Calculated bond lengths (in a.u.), bond angle, and total energy E (in a.u.) for 
staggered C2H6; total energy E (in a.u.) for eclipsed C2H 6 and barrier of rotation AE (in 
kcal/mole). Values in brackets: standard SCF results. Energies are taken at the standard 
SCF geometry of staggered C2H6. Basis set: STO-3G, with p-functions in the direction of 
the bonds. Definition of the local basis sets: see text 

E~ AE rcc rcH @e 

Eclipsed -78.2825 (-78.2978) 
Staggered -78.2871 (-78.3038) 

Barrier of 2.92(3.73) 
rotation 

2.97 (2.91) 2.05 (2.05) 110.3 ~ (108.2 ~ ) 

A g a i n  we e m p l o y e d  a S T O - 3  G basis  set,  wi th  p - func t ions  o r i e n t e d  a long  the  b o n d  
axes.  The  pa r t i t i on ing  of the  basis  set into local  subse ts  was s imi lar  to tha t  
de sc r ibed  a b o v e  in connec t ion  with Tab le  3. The  l s  STO is used  for  the  core,  to  
each  o ' - b o n d  are  a t t r i bu t ed  the  2s S T O ' s  and  (sui tably o r i en ted )  2p S T O ' s  f rom 
a d j a c e n t  C a toms  and,  in case,  the  l s  STO f rom an a d j a c e n t  H a tom.  

T h e  res t r ic t ion ,  caused  by  the  in t roduc t ion  of the  local  basis  sets,  leads  to an 
increase  in the  to ta l  ene rgy  of - 0.5 eV ( c o m p a r e d  to - 2 e V  for  the  t r unca t ed  
L M O ' s  in [4]). W h i l e  the  C H  b o n d  length  is v i r tua l ly  unaffec ted ,  the  CC b o n d  
length  changes  by  0.06 a.u.,  which p r o b a b l y  means  tha t  ou r  local  basis  for  the  CC 
b o n d  orb i t a l  is insufficient.  

The  good  a g r e e m e n t  of our  ro t a t ion  ba r r i e r  wi th  the  e x p e r i m e n t a l  va lue  
(2.93 k c a l / m o l e )  is cer ta in ly  for tu i tous .  C o m p a r e d  to a s t a n d a r d  S C F  ca lcula t ion  
e m p l o y i n g  the  same  basis  set  it is smal le r  by  2 2 % .  This  is s o m e w h a t  be t t e r  than  the  
c o r r e s p o n d i n g  values  35% and  3 4 % ,  o b t a i n e d  by  N e w t o n  et  al. [4] and  by  P a y n e  
[10]. I t  is far  be t t e r  than  the ro t a t i on  ba r r i e r ,  wi th  b o n d  orb i ta l s  cons t ruc ted  f rom 
symmet r i ca l ly  o r t h o g o n a l i z e d  A O ' s ,  r e p o r t e d  recen t ly  by  C o r c o r a n  and  W e i n -  
ho ld  [25], which  indica tes  the  i m p o r t a n c e  of a p r o p e r  choice  of the  local  basis  sets. 
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